MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. CC499K Bronze

5454 aluminum belongs to the aluminum alloys classification, while CC499K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
73
Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 2.3 to 18
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 230 to 350
260
Tensile Strength: Yield (Proof), MPa 97 to 290
120

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
1000
Melting Onset (Solidus), °C 600
920
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 130
73
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
12
Electrical Conductivity: Equal Weight (Specific), % IACS 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
32
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.6
3.1
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
27
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
65
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 23 to 36
8.1
Strength to Weight: Bending, points 30 to 41
10
Thermal Diffusivity, mm2/s 55
22
Thermal Shock Resistance, points 10 to 16
9.2

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Chromium (Cr), % 0.050 to 0.2
0 to 0.020
Copper (Cu), % 0 to 0.1
84 to 88
Iron (Fe), % 0 to 0.4
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.010
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
4.0 to 6.0
Residuals, % 0 to 0.15
0