MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. Titanium 6-7

5454 aluminum belongs to the aluminum alloys classification, while titanium 6-7 belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is titanium 6-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 2.3 to 18
11
Fatigue Strength, MPa 83 to 160
530
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Shear Strength, MPa 140 to 200
610
Tensile Strength: Ultimate (UTS), MPa 230 to 350
1020
Tensile Strength: Yield (Proof), MPa 97 to 290
900

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
300
Melting Completion (Liquidus), °C 650
1700
Melting Onset (Solidus), °C 600
1650
Specific Heat Capacity, J/kg-K 900
520
Thermal Expansion, µm/m-K 24
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
5.1
Embodied Carbon, kg CO2/kg material 8.6
34
Embodied Energy, MJ/kg 150
540
Embodied Water, L/kg 1180
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
110
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
3460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
32
Strength to Weight: Axial, points 23 to 36
56
Strength to Weight: Bending, points 30 to 41
44
Thermal Shock Resistance, points 10 to 16
66

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.0090
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0
6.5 to 7.5
Niobium (Nb), % 0
6.5 to 7.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.25
0
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.2
84.9 to 88
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0