MakeItFrom.com
Menu (ESC)

5454 Aluminum vs. N08028 Stainless Steel

5454 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5454 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 61 to 93
180
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 2.3 to 18
45
Fatigue Strength, MPa 83 to 160
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 140 to 200
400
Tensile Strength: Ultimate (UTS), MPa 230 to 350
570
Tensile Strength: Yield (Proof), MPa 97 to 290
240

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.6
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1180
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3 to 34
210
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 590
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 36
19
Strength to Weight: Bending, points 30 to 41
19
Thermal Diffusivity, mm2/s 55
3.2
Thermal Shock Resistance, points 10 to 16
12

Alloy Composition

Aluminum (Al), % 94.5 to 97.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
26 to 28
Copper (Cu), % 0 to 0.1
0.6 to 1.4
Iron (Fe), % 0 to 0.4
29 to 40.4
Magnesium (Mg), % 2.4 to 3.0
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0