MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. ACI-ASTM CN3MN Steel

5456 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN3MN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is ACI-ASTM CN3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 11 to 18
39
Fatigue Strength, MPa 130 to 210
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 320 to 340
620
Tensile Strength: Yield (Proof), MPa 150 to 250
300

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Corrosion, °C 65
430
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.0
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 33 to 35
21
Strength to Weight: Bending, points 38 to 40
20
Thermal Diffusivity, mm2/s 48
3.4
Thermal Shock Resistance, points 14 to 15
14

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
20 to 22
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.4
41.4 to 50.3
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Nitrogen (N), % 0
0.18 to 0.26
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0