MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. EN 1.3542 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while EN 1.3542 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is EN 1.3542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 320 to 340
720

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Corrosion, °C 65
380
Maximum Temperature: Mechanical, °C 190
770
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
29
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 97
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.0
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1170
100

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33 to 35
26
Strength to Weight: Bending, points 38 to 40
23
Thermal Diffusivity, mm2/s 48
7.9
Thermal Shock Resistance, points 14 to 15
26

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0.6 to 0.7
Chromium (Cr), % 0.050 to 0.2
12.5 to 14.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
82.7 to 87.5
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0