MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. EN 1.4313 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11 to 18
12 to 17
Fatigue Strength, MPa 130 to 210
340 to 510
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 210
460 to 600
Tensile Strength: Ultimate (UTS), MPa 320 to 340
750 to 1000
Tensile Strength: Yield (Proof), MPa 150 to 250
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Corrosion, °C 65
390
Maximum Temperature: Mechanical, °C 190
780
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 97
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
2.4
Embodied Energy, MJ/kg 150
34
Embodied Water, L/kg 1170
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
870 to 2100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33 to 35
27 to 36
Strength to Weight: Bending, points 38 to 40
23 to 28
Thermal Diffusivity, mm2/s 48
6.7
Thermal Shock Resistance, points 14 to 15
27 to 36

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.2
12 to 14
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
78.5 to 84.2
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants