MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. EN 1.4317 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while EN 1.4317 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is EN 1.4317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 11 to 18
17
Fatigue Strength, MPa 130 to 210
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 320 to 340
860
Tensile Strength: Yield (Proof), MPa 150 to 250
630

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Corrosion, °C 65
390
Maximum Temperature: Mechanical, °C 190
770
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 97
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
2.4
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1170
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
1010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33 to 35
31
Strength to Weight: Bending, points 38 to 40
26
Thermal Diffusivity, mm2/s 48
7.0
Thermal Shock Resistance, points 14 to 15
30

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.050 to 0.2
12 to 13.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
78.7 to 84.5
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
3.5 to 5.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0