MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. EN 1.4848 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while EN 1.4848 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is EN 1.4848 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11 to 18
9.0
Fatigue Strength, MPa 130 to 210
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 320 to 340
510
Tensile Strength: Yield (Proof), MPa 150 to 250
250

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Corrosion, °C 65
440
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
4.4
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
38
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33 to 35
18
Strength to Weight: Bending, points 38 to 40
18
Thermal Diffusivity, mm2/s 48
3.9
Thermal Shock Resistance, points 14 to 15
11

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0.050 to 0.2
24 to 27
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
45.4 to 55.7
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0