MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. EN AC-46600 Aluminum

Both 5456 aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 11 to 18
1.1
Fatigue Strength, MPa 130 to 210
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 320 to 340
180
Tensile Strength: Yield (Proof), MPa 150 to 250
110

Thermal Properties

Latent Heat of Fusion, J/g 390
490
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
29
Electrical Conductivity: Equal Weight (Specific), % IACS 97
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 9.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 33 to 35
18
Strength to Weight: Bending, points 38 to 40
25
Thermal Diffusivity, mm2/s 48
51
Thermal Shock Resistance, points 14 to 15
8.1

Alloy Composition

Aluminum (Al), % 92 to 94.8
85.6 to 92.4
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
1.5 to 2.5
Iron (Fe), % 0 to 0.4
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 4.7 to 5.5
0 to 0.35
Manganese (Mn), % 0.5 to 1.0
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.25
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 0.15