MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. CC333G Bronze

5456 aluminum belongs to the aluminum alloys classification, while CC333G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 11 to 18
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 320 to 340
710
Tensile Strength: Yield (Proof), MPa 150 to 250
310

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 190
230
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 570
1020
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
38
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 97
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 9.0
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1170
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
75
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
410
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 33 to 35
24
Strength to Weight: Bending, points 38 to 40
21
Thermal Diffusivity, mm2/s 48
10
Thermal Shock Resistance, points 14 to 15
24

Alloy Composition

Aluminum (Al), % 92 to 94.8
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Chromium (Cr), % 0.050 to 0.2
0 to 0.050
Copper (Cu), % 0 to 0.1
76 to 83
Iron (Fe), % 0 to 0.4
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 4.7 to 5.5
0 to 0.050
Manganese (Mn), % 0.5 to 1.0
0 to 3.0
Nickel (Ni), % 0
3.7 to 6.0
Silicon (Si), % 0 to 0.25
0 to 0.1
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0