MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. G-CoCr28 Cobalt

5456 aluminum belongs to the aluminum alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 11 to 18
6.7
Fatigue Strength, MPa 130 to 210
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
83
Tensile Strength: Ultimate (UTS), MPa 320 to 340
560
Tensile Strength: Yield (Proof), MPa 150 to 250
260

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1200
Melting Completion (Liquidus), °C 640
1330
Melting Onset (Solidus), °C 570
1270
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
8.5
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
100
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.0
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1170
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
31
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 33 to 35
19
Strength to Weight: Bending, points 38 to 40
19
Thermal Diffusivity, mm2/s 48
2.2
Thermal Shock Resistance, points 14 to 15
14

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0.050 to 0.2
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
9.7 to 24.5
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0