MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. Grade 28 Titanium

5456 aluminum belongs to the aluminum alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 11 to 18
11 to 17
Fatigue Strength, MPa 130 to 210
330 to 480
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 190 to 210
420 to 590
Tensile Strength: Ultimate (UTS), MPa 320 to 340
690 to 980
Tensile Strength: Yield (Proof), MPa 150 to 250
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 570
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 120
8.3
Thermal Expansion, µm/m-K 24
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 9.0
37
Embodied Energy, MJ/kg 150
600
Embodied Water, L/kg 1170
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
1370 to 3100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 33 to 35
43 to 61
Strength to Weight: Bending, points 38 to 40
39 to 49
Thermal Diffusivity, mm2/s 48
3.4
Thermal Shock Resistance, points 14 to 15
47 to 66

Alloy Composition

Aluminum (Al), % 92 to 94.8
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.2
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4

Comparable Variants