MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. Grade M30H Nickel

5456 aluminum belongs to the aluminum alloys classification, while grade M30H nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is grade M30H nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
160
Elongation at Break, % 11 to 18
11
Fatigue Strength, MPa 130 to 210
230
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
61
Tensile Strength: Ultimate (UTS), MPa 320 to 340
770
Tensile Strength: Yield (Proof), MPa 150 to 250
470

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 640
1250
Melting Onset (Solidus), °C 570
1200
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
22
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 97
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 9.0
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1170
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
75
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
700
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 50
21
Strength to Weight: Axial, points 33 to 35
25
Strength to Weight: Bending, points 38 to 40
22
Thermal Diffusivity, mm2/s 48
5.7
Thermal Shock Resistance, points 14 to 15
27

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
27 to 33
Iron (Fe), % 0 to 0.4
0 to 3.5
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.5
Nickel (Ni), % 0
57.9 to 70.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
2.7 to 3.7
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0