MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. SAE-AISI 1030 Steel

5456 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1030 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is SAE-AISI 1030 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 11 to 18
14 to 22
Fatigue Strength, MPa 130 to 210
210 to 320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190 to 210
330 to 360
Tensile Strength: Ultimate (UTS), MPa 320 to 340
530 to 590
Tensile Strength: Yield (Proof), MPa 150 to 250
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
51
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 97
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1170
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
77 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
230 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 33 to 35
19 to 21
Strength to Weight: Bending, points 38 to 40
18 to 20
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 14 to 15
17 to 19

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0.28 to 0.34
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
98.7 to 99.12
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0