MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. SAE-AISI 4130 Steel

5456 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4130 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is SAE-AISI 4130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 11 to 18
13 to 26
Fatigue Strength, MPa 130 to 210
320 to 660
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190 to 210
340 to 640
Tensile Strength: Ultimate (UTS), MPa 320 to 340
530 to 1040
Tensile Strength: Yield (Proof), MPa 150 to 250
440 to 980

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
43
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 97
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1170
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
83 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
500 to 2550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 33 to 35
19 to 37
Strength to Weight: Bending, points 38 to 40
19 to 29
Thermal Diffusivity, mm2/s 48
12
Thermal Shock Resistance, points 14 to 15
16 to 31

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0.050 to 0.2
0.8 to 1.1
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
97.3 to 98.2
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0.4 to 0.6
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants