MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. Sintered 2014 Aluminum

Both 5456 aluminum and sintered 2014 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 11 to 18
0.5 to 3.0
Fatigue Strength, MPa 130 to 210
52 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 320 to 340
140 to 290
Tensile Strength: Yield (Proof), MPa 150 to 250
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
33
Electrical Conductivity: Equal Weight (Specific), % IACS 97
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
68 to 560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 33 to 35
13 to 27
Strength to Weight: Bending, points 38 to 40
20 to 33
Thermal Diffusivity, mm2/s 48
51
Thermal Shock Resistance, points 14 to 15
6.2 to 13

Alloy Composition

Aluminum (Al), % 92 to 94.8
91.5 to 96.3
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
3.5 to 5.0
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 4.7 to 5.5
0.2 to 0.8
Manganese (Mn), % 0.5 to 1.0
0
Silicon (Si), % 0 to 0.25
0 to 1.2
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 1.5