MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. C26800 Brass

5456 aluminum belongs to the aluminum alloys classification, while C26800 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is C26800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 320 to 340
310 to 650

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 570
900
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
27
Electrical Conductivity: Equal Weight (Specific), % IACS 97
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1170
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 33 to 35
11 to 22
Strength to Weight: Bending, points 38 to 40
13 to 21
Thermal Diffusivity, mm2/s 48
37
Thermal Shock Resistance, points 14 to 15
10 to 22

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
64 to 68.5
Iron (Fe), % 0 to 0.4
0 to 0.050
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
31 to 36
Residuals, % 0
0 to 0.3