MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. C32000 Brass

5456 aluminum belongs to the aluminum alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 11 to 18
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
41
Shear Strength, MPa 190 to 210
180 to 280
Tensile Strength: Ultimate (UTS), MPa 320 to 340
270 to 470
Tensile Strength: Yield (Proof), MPa 150 to 250
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
1020
Melting Onset (Solidus), °C 570
990
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
36
Electrical Conductivity: Equal Weight (Specific), % IACS 97
37

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 9.0
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 33 to 35
8.8 to 15
Strength to Weight: Bending, points 38 to 40
11 to 16
Thermal Diffusivity, mm2/s 48
47
Thermal Shock Resistance, points 14 to 15
9.5 to 16

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Chromium (Cr), % 0.050 to 0.2
0
Copper (Cu), % 0 to 0.1
83.5 to 86.5
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.25
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
10.6 to 15
Residuals, % 0
0 to 0.4