MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. S20433 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11 to 18
46
Fatigue Strength, MPa 130 to 210
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 210
440
Tensile Strength: Ultimate (UTS), MPa 320 to 340
630
Tensile Strength: Yield (Proof), MPa 150 to 250
270

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Corrosion, °C 65
410
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
230
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33 to 35
23
Strength to Weight: Bending, points 38 to 40
21
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 14 to 15
14

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.2
17 to 18
Copper (Cu), % 0 to 0.1
1.5 to 3.5
Iron (Fe), % 0 to 0.4
64.1 to 72.4
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0