MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. S30601 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while S30601 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is S30601 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 11 to 18
37
Fatigue Strength, MPa 130 to 210
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 190 to 210
450
Tensile Strength: Ultimate (UTS), MPa 320 to 340
660
Tensile Strength: Yield (Proof), MPa 150 to 250
300

Thermal Properties

Latent Heat of Fusion, J/g 390
370
Maximum Temperature: Corrosion, °C 65
410
Maximum Temperature: Mechanical, °C 190
950
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 570
1310
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 9.0
3.9
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33 to 35
24
Strength to Weight: Bending, points 38 to 40
22
Thermal Shock Resistance, points 14 to 15
16

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0.050 to 0.2
17 to 18
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.4
56.9 to 60.5
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
17 to 18
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
5.0 to 5.6
Sulfur (S), % 0
0 to 0.013
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0