MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. S31727 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11 to 18
40
Fatigue Strength, MPa 130 to 210
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 190 to 210
430
Tensile Strength: Ultimate (UTS), MPa 320 to 340
630
Tensile Strength: Yield (Proof), MPa 150 to 250
270

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Corrosion, °C 65
420
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 9.0
4.7
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 33 to 35
22
Strength to Weight: Bending, points 38 to 40
20
Thermal Shock Resistance, points 14 to 15
14

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.2
17.5 to 19
Copper (Cu), % 0 to 0.1
2.8 to 4.0
Iron (Fe), % 0 to 0.4
53.7 to 61.3
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0
14.5 to 16.5
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0