MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. S35315 Stainless Steel

5456 aluminum belongs to the aluminum alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 11 to 18
46
Fatigue Strength, MPa 130 to 210
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 190 to 210
520
Tensile Strength: Ultimate (UTS), MPa 320 to 340
740
Tensile Strength: Yield (Proof), MPa 150 to 250
300

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Corrosion, °C 65
450
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 570
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 97
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1170
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
270
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 33 to 35
26
Strength to Weight: Bending, points 38 to 40
23
Thermal Diffusivity, mm2/s 48
3.1
Thermal Shock Resistance, points 14 to 15
17

Alloy Composition

Aluminum (Al), % 92 to 94.8
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0.050 to 0.2
24 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
33.6 to 40.6
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0