MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. EN 1.4107 Stainless Steel

5457 aluminum belongs to the aluminum alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.0 to 22
18 to 21
Fatigue Strength, MPa 55 to 98
260 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 130 to 210
620 to 700
Tensile Strength: Yield (Proof), MPa 50 to 190
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180
27
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 150
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.1
Embodied Energy, MJ/kg 160
30
Embodied Water, L/kg 1190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
420 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 21
22 to 25
Strength to Weight: Bending, points 21 to 28
21 to 22
Thermal Diffusivity, mm2/s 72
7.2
Thermal Shock Resistance, points 5.7 to 9.0
22 to 25

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.1
83.8 to 87.2
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.080
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0 to 0.050
0 to 0.080
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0

Comparable Variants