MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. EN 1.4510 Stainless Steel

5457 aluminum belongs to the aluminum alloys classification, while EN 1.4510 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is EN 1.4510 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.0 to 22
26
Fatigue Strength, MPa 55 to 98
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 85 to 130
330
Tensile Strength: Ultimate (UTS), MPa 130 to 210
510
Tensile Strength: Yield (Proof), MPa 50 to 190
270

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180
25
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 150
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.4
2.2
Embodied Energy, MJ/kg 160
32
Embodied Water, L/kg 1190
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 21
18
Strength to Weight: Bending, points 21 to 28
18
Thermal Diffusivity, mm2/s 72
6.7
Thermal Shock Resistance, points 5.7 to 9.0
17

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.1
79.1 to 83.9
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0