MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. EN 1.7378 Steel

5457 aluminum belongs to the aluminum alloys classification, while EN 1.7378 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is EN 1.7378 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 55
210
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.0 to 22
17
Fatigue Strength, MPa 55 to 98
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 85 to 130
430
Tensile Strength: Ultimate (UTS), MPa 130 to 210
700
Tensile Strength: Yield (Proof), MPa 50 to 190
490

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
460
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
39
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 150
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
2.3
Embodied Energy, MJ/kg 160
33
Embodied Water, L/kg 1190
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 13 to 21
25
Strength to Weight: Bending, points 21 to 28
22
Thermal Diffusivity, mm2/s 72
10
Thermal Shock Resistance, points 5.7 to 9.0
20

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.1
94.6 to 96.1
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.080
0.15 to 0.45
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.050 to 0.1
Vanadium (V), % 0 to 0.050
0.2 to 0.3
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0