MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. EN 2.4663 Nickel

5457 aluminum belongs to the aluminum alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 6.0 to 22
40
Fatigue Strength, MPa 55 to 98
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 85 to 130
540
Tensile Strength: Ultimate (UTS), MPa 130 to 210
780
Tensile Strength: Yield (Proof), MPa 50 to 190
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 630
1380
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 180
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 150
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.4
11
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1190
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
250
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 13 to 21
25
Strength to Weight: Bending, points 21 to 28
22
Thermal Diffusivity, mm2/s 72
3.5
Thermal Shock Resistance, points 5.7 to 9.0
22

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.1
0 to 2.0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 0
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.080
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.6
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0