MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. CC763S Brass

5457 aluminum belongs to the aluminum alloys classification, while CC763S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is CC763S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 55
130
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 6.0 to 22
7.3
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
41
Tensile Strength: Ultimate (UTS), MPa 130 to 210
490
Tensile Strength: Yield (Proof), MPa 50 to 190
270

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 660
870
Melting Onset (Solidus), °C 630
830
Specific Heat Capacity, J/kg-K 900
400
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
29
Electrical Conductivity: Equal Weight (Specific), % IACS 150
32

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.4
2.9
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
30
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
340
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 13 to 21
17
Strength to Weight: Bending, points 21 to 28
17
Thermal Shock Resistance, points 5.7 to 9.0
16

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
1.0 to 2.5
Antimony (Sb), % 0
0 to 0.080
Copper (Cu), % 0 to 0.2
56.5 to 67
Iron (Fe), % 0 to 0.1
0.5 to 2.0
Lead (Pb), % 0
0 to 1.5
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
1.0 to 3.5
Nickel (Ni), % 0
0 to 2.5
Silicon (Si), % 0 to 0.080
0 to 1.0
Tin (Sn), % 0
0 to 1.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
18.9 to 41
Residuals, % 0 to 0.1
0