MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. SAE-AISI 9254 Steel

5457 aluminum belongs to the aluminum alloys classification, while SAE-AISI 9254 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is SAE-AISI 9254 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 55
200
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.0 to 22
20
Fatigue Strength, MPa 55 to 98
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 85 to 130
410
Tensile Strength: Ultimate (UTS), MPa 130 to 210
660
Tensile Strength: Yield (Proof), MPa 50 to 190
410

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 180
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 150
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.4
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1190
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 13 to 21
24
Strength to Weight: Bending, points 21 to 28
22
Thermal Diffusivity, mm2/s 72
12
Thermal Shock Resistance, points 5.7 to 9.0
20

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0
0.6 to 0.8
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.1
96.1 to 97.1
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.080
1.2 to 1.6
Sulfur (S), % 0
0 to 0.040
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0