MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. C85500 Brass

5457 aluminum belongs to the aluminum alloys classification, while C85500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is C85500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 55
85
Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 6.0 to 22
40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 130 to 210
410
Tensile Strength: Yield (Proof), MPa 50 to 190
160

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 660
900
Melting Onset (Solidus), °C 630
890
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 180
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
26
Electrical Conductivity: Equal Weight (Specific), % IACS 150
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 1190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
130
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
120
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 13 to 21
14
Strength to Weight: Bending, points 21 to 28
15
Thermal Diffusivity, mm2/s 72
38
Thermal Shock Resistance, points 5.7 to 9.0
14

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
0
Copper (Cu), % 0 to 0.2
59 to 63
Iron (Fe), % 0 to 0.1
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.15 to 0.45
0 to 0.2
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.080
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
35.1 to 41
Residuals, % 0
0 to 0.9