MakeItFrom.com
Menu (ESC)

5457 Aluminum vs. C87800 Brass

5457 aluminum belongs to the aluminum alloys classification, while C87800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5457 aluminum and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 6.0 to 22
25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Tensile Strength: Ultimate (UTS), MPa 130 to 210
590
Tensile Strength: Yield (Proof), MPa 50 to 190
350

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 660
920
Melting Onset (Solidus), °C 630
820
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 180
28
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 150
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
130
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 250
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 13 to 21
20
Strength to Weight: Bending, points 21 to 28
19
Thermal Diffusivity, mm2/s 72
8.3
Thermal Shock Resistance, points 5.7 to 9.0
21

Alloy Composition

Aluminum (Al), % 97.8 to 99.05
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 0 to 0.2
80 to 84.2
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.8 to 1.2
0 to 0.010
Manganese (Mn), % 0.15 to 0.45
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.080
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
12 to 16
Residuals, % 0
0 to 0.5