MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. ASTM A204 Steel

5652 aluminum belongs to the aluminum alloys classification, while ASTM A204 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is ASTM A204 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47 to 77
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.8 to 25
18 to 22
Fatigue Strength, MPa 60 to 140
200 to 220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 110 to 170
330 to 360
Tensile Strength: Ultimate (UTS), MPa 190 to 290
520 to 590
Tensile Strength: Yield (Proof), MPa 74 to 260
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 610
1420 to 1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
52
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1190
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
90 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
220 to 290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 30
18 to 21
Strength to Weight: Bending, points 27 to 36
18 to 20
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 8.4 to 13
15 to 17