MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. ASTM A387 Grade 22L Class 1

5652 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47 to 77
150
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.8 to 25
20
Fatigue Strength, MPa 60 to 140
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 110 to 170
310
Tensile Strength: Ultimate (UTS), MPa 190 to 290
500
Tensile Strength: Yield (Proof), MPa 74 to 260
230

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
460
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1190
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
83
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 30
18
Strength to Weight: Bending, points 27 to 36
18
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 8.4 to 13
14

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.15 to 0.35
2.0 to 2.5
Copper (Cu), % 0 to 0.040
0
Iron (Fe), % 0 to 0.4
95.2 to 96.8
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0