MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. AZ80A Magnesium

5652 aluminum belongs to the aluminum alloys classification, while AZ80A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is AZ80A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
46
Elongation at Break, % 6.8 to 25
3.9 to 8.5
Fatigue Strength, MPa 60 to 140
140 to 170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
18
Shear Strength, MPa 110 to 170
160 to 190
Tensile Strength: Ultimate (UTS), MPa 190 to 290
320 to 340
Tensile Strength: Yield (Proof), MPa 74 to 260
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 610
490
Specific Heat Capacity, J/kg-K 900
990
Thermal Conductivity, W/m-K 140
77
Thermal Expansion, µm/m-K 24
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
59

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.6
23
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
12 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
500 to 600
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
69
Strength to Weight: Axial, points 20 to 30
51 to 55
Strength to Weight: Bending, points 27 to 36
60 to 63
Thermal Diffusivity, mm2/s 57
45
Thermal Shock Resistance, points 8.4 to 13
19 to 20

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
7.8 to 9.2
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.040
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.0050
Magnesium (Mg), % 2.2 to 2.8
89 to 91.9
Manganese (Mn), % 0 to 0.010
0.12 to 0.5
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.4
0 to 0.1
Zinc (Zn), % 0 to 0.1
0.2 to 0.8
Residuals, % 0
0 to 0.3