MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. EN 1.4805 Stainless Steel

5652 aluminum belongs to the aluminum alloys classification, while EN 1.4805 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is EN 1.4805 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47 to 77
140
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.8 to 25
9.0
Fatigue Strength, MPa 60 to 140
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 190 to 290
490
Tensile Strength: Yield (Proof), MPa 74 to 260
250

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 650
1390
Melting Onset (Solidus), °C 610
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
4.7
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
37
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 30
17
Strength to Weight: Bending, points 27 to 36
18
Thermal Diffusivity, mm2/s 57
3.7
Thermal Shock Resistance, points 8.4 to 13
11

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0.15 to 0.35
19 to 23
Copper (Cu), % 0 to 0.040
0
Iron (Fe), % 0 to 0.4
44.9 to 56.8
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
23 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0