MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. EN 1.4854 Stainless Steel

5652 aluminum belongs to the aluminum alloys classification, while EN 1.4854 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is EN 1.4854 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47 to 77
180
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.8 to 25
45
Fatigue Strength, MPa 60 to 140
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 110 to 170
520
Tensile Strength: Ultimate (UTS), MPa 190 to 290
750
Tensile Strength: Yield (Proof), MPa 74 to 260
340

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
1170
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 610
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
270
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 30
26
Strength to Weight: Bending, points 27 to 36
23
Thermal Diffusivity, mm2/s 57
2.9
Thermal Shock Resistance, points 8.4 to 13
18

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0.15 to 0.35
24 to 26
Copper (Cu), % 0 to 0.040
0
Iron (Fe), % 0 to 0.4
33.6 to 40.6
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.2 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0