MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. EN 1.8918 Steel

5652 aluminum belongs to the aluminum alloys classification, while EN 1.8918 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is EN 1.8918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47 to 77
190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.8 to 25
19
Fatigue Strength, MPa 60 to 140
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 110 to 170
400
Tensile Strength: Ultimate (UTS), MPa 190 to 290
640
Tensile Strength: Yield (Proof), MPa 74 to 260
490

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.7
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1190
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
110
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 30
23
Strength to Weight: Bending, points 27 to 36
21
Thermal Diffusivity, mm2/s 57
12
Thermal Shock Resistance, points 8.4 to 13
19

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0.020 to 0.050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.15 to 0.35
0 to 0.3
Copper (Cu), % 0 to 0.040
0 to 0.7
Iron (Fe), % 0 to 0.4
95.2 to 98.9
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0