MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. EN AC-46600 Aluminum

Both 5652 aluminum and EN AC-46600 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 47 to 77
77
Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 6.8 to 25
1.1
Fatigue Strength, MPa 60 to 140
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 190 to 290
180
Tensile Strength: Yield (Proof), MPa 74 to 260
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 610
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
29
Electrical Conductivity: Equal Weight (Specific), % IACS 120
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.6
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 20 to 30
18
Strength to Weight: Bending, points 27 to 36
25
Thermal Diffusivity, mm2/s 57
51
Thermal Shock Resistance, points 8.4 to 13
8.1

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
85.6 to 92.4
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.040
1.5 to 2.5
Iron (Fe), % 0 to 0.4
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 2.2 to 2.8
0 to 0.35
Manganese (Mn), % 0 to 0.010
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.4
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.15