MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. CR006A Copper

5652 aluminum belongs to the aluminum alloys classification, while CR006A copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is CR006A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 6.8 to 25
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 190 to 290
230
Tensile Strength: Yield (Proof), MPa 74 to 260
140

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
1090
Melting Onset (Solidus), °C 610
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 140
380
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.6
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
31
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 20 to 30
7.1
Strength to Weight: Bending, points 27 to 36
9.3
Thermal Diffusivity, mm2/s 57
110
Thermal Shock Resistance, points 8.4 to 13
8.1

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.040
99.9 to 100
Iron (Fe), % 0 to 0.4
0
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0
Oxygen (O), % 0
0 to 0.1
Silicon (Si), % 0 to 0.4
0
Silver (Ag), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0