MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. Grade 6 Titanium

5652 aluminum belongs to the aluminum alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 6.8 to 25
11
Fatigue Strength, MPa 60 to 140
290
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
39
Shear Strength, MPa 110 to 170
530
Tensile Strength: Ultimate (UTS), MPa 190 to 290
890
Tensile Strength: Yield (Proof), MPa 74 to 260
840

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
310
Melting Completion (Liquidus), °C 650
1580
Melting Onset (Solidus), °C 610
1530
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 140
7.8
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.6
30
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
92
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 20 to 30
55
Strength to Weight: Bending, points 27 to 36
46
Thermal Diffusivity, mm2/s 57
3.2
Thermal Shock Resistance, points 8.4 to 13
65

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
4.0 to 6.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.040
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4