MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. C69400 Brass

5652 aluminum belongs to the aluminum alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 6.8 to 25
17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 110 to 170
350
Tensile Strength: Ultimate (UTS), MPa 190 to 290
570
Tensile Strength: Yield (Proof), MPa 74 to 260
270

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
920
Melting Onset (Solidus), °C 610
820
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 140
26
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
80
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 20 to 30
19
Strength to Weight: Bending, points 27 to 36
18
Thermal Diffusivity, mm2/s 57
7.7
Thermal Shock Resistance, points 8.4 to 13
20

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.040
80 to 83
Iron (Fe), % 0 to 0.4
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0
Silicon (Si), % 0 to 0.4
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
11.5 to 16.5
Residuals, % 0
0 to 0.5