MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. N06025 Nickel

5652 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.8 to 25
32
Fatigue Strength, MPa 60 to 140
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 110 to 170
500
Tensile Strength: Ultimate (UTS), MPa 190 to 290
760
Tensile Strength: Yield (Proof), MPa 74 to 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 650
1350
Melting Onset (Solidus), °C 610
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.6
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
190
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 30
26
Strength to Weight: Bending, points 27 to 36
22
Thermal Diffusivity, mm2/s 57
2.9
Thermal Shock Resistance, points 8.4 to 13
21

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0.15 to 0.35
24 to 26
Copper (Cu), % 0 to 0.040
0 to 0.1
Iron (Fe), % 0 to 0.4
8.0 to 11
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.1
0.010 to 0.1
Residuals, % 0 to 0.15
0