MakeItFrom.com
Menu (ESC)

5652 Aluminum vs. N08135 Stainless Steel

5652 aluminum belongs to the aluminum alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5652 aluminum and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.8 to 25
46
Fatigue Strength, MPa 60 to 140
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 110 to 170
400
Tensile Strength: Ultimate (UTS), MPa 190 to 290
570
Tensile Strength: Yield (Proof), MPa 74 to 260
240

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 610
1390
Specific Heat Capacity, J/kg-K 900
460
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.6
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1190
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 39
210
Resilience: Unit (Modulus of Resilience), kJ/m3 40 to 480
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 20 to 30
19
Strength to Weight: Bending, points 27 to 36
19
Thermal Shock Resistance, points 8.4 to 13
13

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.15 to 0.35
20.5 to 23.5
Copper (Cu), % 0 to 0.040
0 to 0.7
Iron (Fe), % 0 to 0.4
30.2 to 42.3
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.010
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0