MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. ACI-ASTM CN7MS Steel

5657 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
160
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.6 to 15
39
Fatigue Strength, MPa 74 to 88
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 150 to 200
540
Tensile Strength: Yield (Proof), MPa 140 to 170
230

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 180
1040
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 640
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 210
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.4
5.1
Embodied Energy, MJ/kg 160
71
Embodied Water, L/kg 1200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 15 to 20
19
Strength to Weight: Bending, points 23 to 28
19
Thermal Diffusivity, mm2/s 84
3.2
Thermal Shock Resistance, points 6.7 to 8.6
13

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0 to 0.1
1.5 to 2.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
45.4 to 53.5
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.080
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0