MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. AWS ER120S-1

5657 aluminum belongs to the aluminum alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.6 to 15
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 150 to 200
930
Tensile Strength: Yield (Proof), MPa 140 to 170
830

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 640
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 180
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.2
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.9
Embodied Energy, MJ/kg 160
25
Embodied Water, L/kg 1200
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
150
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
1850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 20
33
Strength to Weight: Bending, points 23 to 28
27
Thermal Diffusivity, mm2/s 84
13
Thermal Shock Resistance, points 6.7 to 8.6
27

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0 to 0.1
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 0 to 0.1
0 to 0.25
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
92.4 to 96.1
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.080
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0 to 0.050
0 to 0.030
Zinc (Zn), % 0 to 0.050
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5