MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. EN 1.6368 Steel

5657 aluminum belongs to the aluminum alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.6 to 15
18
Fatigue Strength, MPa 74 to 88
310 to 330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 92 to 110
410 to 430
Tensile Strength: Ultimate (UTS), MPa 150 to 200
660 to 690
Tensile Strength: Yield (Proof), MPa 140 to 170
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 210
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 180
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.4
1.7
Embodied Energy, MJ/kg 160
22
Embodied Water, L/kg 1200
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
580 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 20
23 to 24
Strength to Weight: Bending, points 23 to 28
21 to 22
Thermal Diffusivity, mm2/s 84
11
Thermal Shock Resistance, points 6.7 to 8.6
20

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0.015 to 0.040
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
0.5 to 0.8
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
95.1 to 97.2
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.080
0.25 to 0.5
Sulfur (S), % 0
0 to 0.010
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0