MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. EN 2.4856 Nickel

5657 aluminum belongs to the aluminum alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
210
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.6 to 15
28
Fatigue Strength, MPa 74 to 88
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 92 to 110
570
Tensile Strength: Ultimate (UTS), MPa 150 to 200
880
Tensile Strength: Yield (Proof), MPa 140 to 170
430

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 660
1480
Melting Onset (Solidus), °C 640
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 210
10
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.4
14
Embodied Energy, MJ/kg 160
190
Embodied Water, L/kg 1200
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
200
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 15 to 20
28
Strength to Weight: Bending, points 23 to 28
24
Thermal Diffusivity, mm2/s 84
2.7
Thermal Shock Resistance, points 6.7 to 8.6
29

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
0 to 5.0
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.080
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.4
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0