MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. Nickel 685

5657 aluminum belongs to the aluminum alloys classification, while nickel 685 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is nickel 685.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
350
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.6 to 15
17
Fatigue Strength, MPa 74 to 88
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 92 to 110
770
Tensile Strength: Ultimate (UTS), MPa 150 to 200
1250
Tensile Strength: Yield (Proof), MPa 140 to 170
850

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 660
1380
Melting Onset (Solidus), °C 640
1330
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 210
13
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
1820
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 15 to 20
42
Strength to Weight: Bending, points 23 to 28
31
Thermal Diffusivity, mm2/s 84
3.3
Thermal Shock Resistance, points 6.7 to 8.6
37

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0 to 0.1
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
0 to 2.0
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
49.6 to 62.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.080
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
2.8 to 3.3
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0.020 to 0.12
Residuals, % 0 to 0.050
0