MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. C35300 Brass

5657 aluminum belongs to the aluminum alloys classification, while C35300 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is C35300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
39
Tensile Strength: Ultimate (UTS), MPa 150 to 200
340 to 650

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 660
910
Melting Onset (Solidus), °C 640
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 210
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
26
Electrical Conductivity: Equal Weight (Specific), % IACS 180
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.4
2.6
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 1200
320

Common Calculations

Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 15 to 20
12 to 22
Strength to Weight: Bending, points 23 to 28
13 to 21
Thermal Diffusivity, mm2/s 84
38
Thermal Shock Resistance, points 6.7 to 8.6
11 to 22

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0
Copper (Cu), % 0 to 0.1
60 to 63
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0
1.5 to 2.5
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0
Silicon (Si), % 0 to 0.080
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
33.9 to 38.5
Residuals, % 0
0 to 0.5