MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. N10276 Nickel

5657 aluminum belongs to the aluminum alloys classification, while N10276 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is N10276 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 6.6 to 15
47
Fatigue Strength, MPa 74 to 88
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 92 to 110
550
Tensile Strength: Ultimate (UTS), MPa 150 to 200
780
Tensile Strength: Yield (Proof), MPa 140 to 170
320

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 660
1370
Melting Onset (Solidus), °C 640
1320
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 210
9.1
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 180
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.4
13
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 1200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
300
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 15 to 20
24
Strength to Weight: Bending, points 23 to 28
21
Thermal Diffusivity, mm2/s 84
2.4
Thermal Shock Resistance, points 6.7 to 8.6
23

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
14.5 to 16.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
4.0 to 7.0
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0 to 0.010
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
51 to 63.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.080
0 to 0.080
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
3.0 to 4.5
Vanadium (V), % 0 to 0.050
0 to 0.35
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0