MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. S30600 Stainless Steel

5657 aluminum belongs to the aluminum alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
180
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 6.6 to 15
45
Fatigue Strength, MPa 74 to 88
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 92 to 110
430
Tensile Strength: Ultimate (UTS), MPa 150 to 200
610
Tensile Strength: Yield (Proof), MPa 140 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 180
950
Melting Completion (Liquidus), °C 660
1380
Melting Onset (Solidus), °C 640
1330
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 210
14
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 54
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 180
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.4
3.6
Embodied Energy, MJ/kg 160
51
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 15 to 20
22
Strength to Weight: Bending, points 23 to 28
21
Thermal Diffusivity, mm2/s 84
3.7
Thermal Shock Resistance, points 6.7 to 8.6
14

Alloy Composition

Aluminum (Al), % 98.5 to 99.4
0
Carbon (C), % 0
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 0 to 0.1
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
58.9 to 65.3
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
14 to 15.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.080
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0